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ABSTRACT
Writing and its means have become detached. Unlike written
and drawn practices developed prior to the 20th century, no-
tation for programming computers developed in concert and
conflict with discretizing infrastructure such as the shift-key
typewriter and data processing pipelines. In this paper, I recall
the emergence of high-level notation for representing com-
putation. I show how the earliest inventors of programming
notations borrowed from various written cultural practices,
some of which came into conflict with the constraints of digi-
tizing machines, most prominently the typewriter. As such, I
trace how practices of “writing code” were fabricated along so-
cial, cultural, and material lines at the time of their emergence.
By juxtaposing early visions with the modern status quo, I
question long-standing terminology, dichotomies, and episte-
mological tendencies in the field of computer programming.
Finally, I argue that translation work is a fundamental property
of the practice of writing code by advancing an intercultural
lens on programming practice rooted in history.
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INTRODUCTION
One historical particularity is generalised into a timeless
and spaceless universality... shifting the focus of particu-
larity to a plurality of centres, is a welcome antidote.

– Ngũgı̃ wa Thiong’o [135]

When we hear of computer programming, we think of a pos-
ture and a place, a culture, a normalized and designed “way
of being” [137]. This dominant culture and its assumptions
become entrenched in discourse: the Oxford dictionary defines
a programmer as “a person who writes computer programs,”
leaving the means of writing open to interpretation [42]; the
computing discipline mobilizes metaphors of language, con-
juring linearity and literacy [101, 130]. In fact, “to write
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programs” today almost always implies a very specific assem-
blage, regardless of geography, involving the keyboard, screen,
mouse or trackpad, and practices tied to the affordances of
these devices. A quick type in a search engine reflects the
dominant vision of the modern programmer: hunched over a
screen, typing small lines of print.

Our imaginations are conditioned by sociotechnical status
quo; over time, as assemblages stabilize and erect infrastruc-
ture in their image, we struggle to imagine any alternative
[37, 114, 91]. Assemblages become socially “normalized”
and materially “naturalized,” entrenched in a design initially
stabilized around different technical, cultural, and historical
circumstances, sometimes regardless of the proficiency of the
design years later [77, 19]. This status quo becomes engrained
in hearts and minds, in professionalization practices, in orga-
nizations, and is reproduced unwittingly by new designs [114,
103]. As researchers with postcolonial sensibilities know only
too well, those looking to create or account for alternative
ways of being and knowing often struggle with the need for
“translations” from their (and their readers’) encultured per-
spective [131, 23, 124]. Yet despite writing code’s central
importance to the creation of new forms of HCI, there is a sig-
nificant lack of sustained reflection on how this commonplace
practice was historically constructed with prior ready-to-hand
infrastructure and cultural practices [62].

This paper traces the sociomaterial fabrication of early com-
puter programming notation and practice: of how ‘to write
code’ came to imply typing characters in text editors and
terminals, rather than (for example) a practice involving hand-
writing or drawing. Through three case studies of the earliest
visions of ‘writing code,’ I recall the emergence of high-level1
programming notation and computing’s extension of earlier
social and material infrastructure of the typewriter and card-
based processing. Adopting a cultural-historical sensibility to
technological emergence, I trace how early inventors’ prac-
tices in logic, physics, mathematics, engineering, and art –with
their varying, handwritten and drawn notations and sensibili-
ties –informed and directed how they fabricated programming
notations and practice. I argue that an initial diversity of

1High-level refers to notations that would need to be considerably
interpreted into machine code (numbers) in order to run [83]. Assem-
bly code largely serves as a mnemonic device to numeric codes and
are excluded.
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styles quickly came into conflict with typewriters and card-
based pipelines, and that notations were thereby serialized
and transformed. Corresponding to this transformation and
coordinated with the need to align computer science with for-
mal abstraction to justify the new discipline [125, 34], values
became attached to different forms of programming notations
that reflect prior modernist dichotomies in North American
and European societies between the ‘textual’ and the ‘visual,’
the ‘written’ and the ‘drawn’ [73], aligning the former with
objective authority and the latter with aesthetic choice [106].

By tracing this history, I (provocatively) redefine programming
as not just involving the design of algorithms or systems, but
often “a problem of mapping from one culture to another”
[38, p. 138] –from its very inception, a practice which so
often involves translation work between representations and
which is intimately tied to intercultural conflict, compromise,
and innovation. In so doing, I advance an intercultural lens
[74] on programming practice as a site of social, material,
and epistemological contestation, not just in the design of
contemporary software or for those outside the societies where
computing emerged, but embedded in the design and history
of the very tools and practices which support the development
of software, and the communities and discourses which have
formed around them. In the process, I join other scholars [8,
23, 90] in seeking to “move the centre” [135] in discourse
around programming, making, and HCI more broadly towards
a plurality of cultural perspectives and practices, while leaning
away from overly simplistic rhetoric of the ‘West’ that denies
inner heterogeneity.

To begin, I contend with why ‘writing code’ deserves attention,
when there have been numerous attempts –such as tangible
programming or direct manipulation languages [94, 71] –to
reconstitute programming practice. To demonstrate how even
the most radical visions of programming can end up recentring
a typewritten status quo, I offer the following contemporary
anecdote.

THE PARADOX OF CHANGE IN HCI
In 2017, a group of artists, designers, and software engineers,
led by former Apple designer Bret Victor, came together in
Oakland, California to forge a new vision for the future of com-
puter programming. Their goal was “to incubate a humane
dynamic medium whose full power is accessible to all people,”
pledging to liberate professional programming practice from
the confines of stuffy offices, isolating screens, and constrain-
ing devices. “No screens, no devices” became the project’s
motto and organizing principle. No longer impersonal and
individualized, programming would become communal, so-
cial, and democratized. People would “think with their hands,
their bodies, spread out, walk around, compare possibilities,
improvise, and experiment” [132].

DynamicLand is a room-sized operating system that realizes
visions from ubiquitous computing and tangible programming,
an impressive achievement by any measure. Yet despite the
refrain of “no screens, no devices,” DynamicLand’s core in-
frastructure is Lua code printed on pieces of paper. To make
alterations to the room-sized program, programmers regularly

re-constitute the bottleneck of the shift-key keyboard and as-
sociated standards of ASCII symbols laid out in left-to-right,
top-to-bottom sequence on a screen [118]. In order for “all
people” to gain access to computing’s full power, to liberate
themselves from all the screens and devices, the bottleneck of
the screen and keyboard again re-formed.

From a broader vantage point, the DynamicLand paradox
highlights a growing discomfort with contradictions between
utopian rhetoric and technology’s actual ability to enact
change, whether in education, politics, international devel-
opment, organizations, or design [126, 108, 90, 114, 119, 103].
In HCI and beyond, wide swaths of people are now wary of
failed promises. Contradictions abound: companies who profit
off of user attention release tools to monitor attention; the rich,
after buying the newest marginal phone upgrade, pay again to
have it taken away [70]; teenagers, whose computer use we
are told we should be concerned about, protest computer over-
exposure [120]; the same billionaires that send their children
to ‘disconnected’ schools pour millions into connected learn-
ing programs [126]. As the anthropologist Alexei Yurchak
found of the ailing Soviet Union, tech today is “simultaneously
eternal and stagnating, vigorous and ailing, bleak and full of
promise” [138].

Alongside this growing disillusionment with computing tech-
nology is a corresponding de-mystification of its design and
professionalization processes. As the field of science and
technology studies (STS) has shown, ostensibly technical dis-
ciplines are replete with social elements: technologies are so-
cially constructed, co-produced with society, and value-laden
[24, 136, 77, 3]. STS perspectives have shed light on pro-
gramming practice and histories, whether the role of trust and
professional vision in data science [106, 105], the marginaliza-
tion of weavers as programmers in the Apollo program [114],
the construction of computing as a science [125, 3, 38], or the
framing of coding as a literacy [130]. Postcolonial scholars
have also attempted to decentre dominant narratives in the
maker movement’s rhetoric [90, 8], suggesting that maker
practices should be more inclusively framed as “making do”:
“using the materials and competencies on hand to create ob-
jects or processes that aid in everyday life,” rather than framed
as inherently revolutionary or democratizing [8].

A complementary issue to the goal of decentring dominant
narratives is how the tools developed to support programming
condition thoughts and imaginations. Past scholarship on
the influence of material representations on knowledge con-
struction argues that the structure of (typewritten) notations
influence the kinds of problems encountered in their usage [44,
p. 8-9]. This argument is suggestive of situated theories of
cognition such as cultural-historical activity theory (CHAT),
widely applied in CSCW and CSCL2 and deriving from Rus-
sian psychologists Vygotsky and Leont’ev [79, 35]. A CHAT
perspective emphasizes the cultural and historical roots of so-
cial activity and its mediators and argues that learning relies
on gradual ‘internalizations’ of ‘externalized’ cultural tools
(“such as algebraic notation, a map, or a blueprint” [79, p.
42]). The term culture here operates in a generative, rather

2Computer-Supported Cooperative Work and Learning, respectively.
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than a taxonomic sense, and is defined by Irani & Dourish
as “a lens through which people collectively encounter the
world, a system of interpretive signification which renders
the world intersubjectively meaningful... [A]n individual may
participate in many cultures –cultures of ethnicity, nationhood,
profession, class, gender, kinship, and history –each of which,
with their logics and narratives, frame the experience of every-
day life” [74, p. 2-3]. From these perspectives, programming
notations are cultural tools, affording certain thoughts and
frames while resisting others.

However, tools and practices for new disciplines like comput-
ing do not arise in a vacuum; rather, situated practice extends
and appropriates pre-existing culture to new ends. As Pick-
ering argued of physicists, this extension operates through a
mangle of practice, a dialectic of resistance and accommo-
dation between humans and machines [109]. Comments in
postcolonial-oriented papers can cast programming languages
as arbiters of a Western monoculture (e.g., [23, 58]), and
while reflecting on the entrenchment of certain values, repre-
sentations, and assumptions is useful3 –in the spirit of Ong’s
contrasting of written and oral societies [102] –it is perhaps too
simplistic an argument to accommodate inner heterogeneity.
As Dourish notes, in order to “get a grip” on the cultural con-
sequences of technology, we must take seriously its “material
specificities” rather than speaking of an amorphous and unex-
amined presence [43]. What exactly is the cultural heritage
of programming notation and practice, beyond the obvious
use of English keywords? How did ready-to-hand cultural
practices influence the design and development of new ones?
And how might the spread and influence of early approaches
impact the current field, whether visibly or in deeply held,
almost invisible ways? While not claiming to answer these
questions definitively, this work aligns itself with a growing
number of scholars at CHI and beyond arguing for deeper
engagement with HCI’s early history [114, 115, 81, 4, 8]. I
build on this work by trying, as much as possible, to avoid
casting our present-day assumptions onto the earliest history
of programming. Unlike other work on programming at CHI
focused on end-users, for novices, or otherwise tools or studies
to support the typewritten status quo, I call into question here
the entrenchment of the dominant regime.

HUMAN-MACHINE INTERACTION BEFORE HCI
To orient ourselves in the past, I briefly outline the state of
“human-machine interaction” around the advent of digital com-
puters. Some historians now regard the emergence of digital
computing as a period of gradual change, rather than a revo-
lutionary discontinuity [38, 61, 36]. The machine ‘computer’
extended workflows of industrial data processing at a time
when writing was being disassociated from writing ‘by hand’
and increasingly associated with writing through a discretizing
(or “technolinguistic” [97]) mediator [36, 10, 73]. The history
of HCI is thus also a history of the “eternal recurrence” [82] of
the typewriter, and to this technology I shed some light here.

3Importantly, groups outside of Anglo societies have raised these
concerns, such as indigenous Hawaiians converting C# to their lan-
guage [98], Nasser’s Arabic programming language Qalb [99], and
Nguyen’s account of a Vietnamese software community [8].

The dominance of typing is of course a topic many scholars
have commented on. Like Latour’s crashing of distinctions be-
tween the human and nonhuman [87], early twentieth century
philosophers framed typewriters as having agency. Nietzsche
wrote that typewriters have “fine fingers, to use us,” and Hei-
degger, who believed the hand was “the essential distinction
of man,” warned that the typewriter “imposes its own use” on
humankind, transforming “the relation of Being to man” [82,
p. 198-200, 207]. Phenomenologists and cognitive scientists
would echo these notions later in their concerns about, for
instance, shifts from the level of “paragraph” to “sentence”
and shortening attention spans [92, 32]. Recently, the anthro-
pologist Tim Ingold harkened back to these concerns when
he called on HCI researchers to imagine an antidote to dis-
cretizing technology: “a technologically enhanced sensitivity,
brought into the service of hands-on engagement with materi-
als in making, [which] could genuinely enlarge the scope of
humanity, rather than further eroding it” [72, p. 124].

The history of the typewriter is some respects reflects warn-
ings about its homogenizing effects. While much has been
made (and debated) over the QWERTY layout [19, 39], a less
reflected on and even more pernicious case of path dependency
is the shift-key mechanism. The Remington II shift-key type-
writer was optimized for the lower frequency of capitalized
letters in English and first designed by American companies
embedded in a left-to-right, top-to-bottom written culture [3].
In The Chinese Typewriter, Mullaney shows how non-English
writing systems were adapted to the standard with as little
modifications as possible in order to lower factory assembly
costs. In popular media, the typewriter became a symbol of
modernity, a machine whose dissemination brought the com-
ing of civilization. Written cultures became judged by their
ability to be consumed by the shift-key style and faced pres-
sures to change or romanize. For instance, Chinese logograms
were debased in both global and domestic discourse (e.g., by
Mao Zedong), and the Thai language lost two characters due to
space limitations (a change which persists today). Moreover,
the name ‘typewriter’ conditioned how people interpreted and
imagined other technolinguistic machines; for instance, early
Chinese typewriters did not in fact have keys [97].

As the shift-key typewriter monopolized writing and threat-
ened cultural diversity, an intimate symbiosis between the
computer and the typewriter became drawn in the theories and
metaphors that retroactively [60] came to define the discipline
of computing. As a boy, Alan Turing pictured himself invent-
ing typewriters to mitigate his poor handwriting; as an adult he
preferred to type than write [82, 68], behavior atypical among
many of his mathematical contemporaries.4 In his seminal
1937 paper on computability, Turing describes a generalized
typewriter that prints characters on a page with four extensions:
it uses an infinite paper tape; can remember and erase symbols
in place; and, inspired by the shift-key, may switch between
a variable number of configurations [128, 68]. Turing’s later
paper on artificial intelligence calls the typewriter interface

4As was common at the time, Turing would handwrite in mathemati-
cal notation that extended beyond his typewriters’ abilities (e.g. [68,
p. 356]).
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the “ideal arrangement” through which to verify intelligence,
echoing the civilizing guise of earlier discourse [129].

At the same time, infrastructures of large-scale data processing
came to prominence in U.S. accounting. Dorr Felt’s Comp-
tometer and William Burroughs’ adding machine products,
fitted with keys inspired by typewriters, were “the two most
popular sets of devices available in the U.S. at the turn of the
[20th] century” and could add and multiply numbers [10, p.
30-1]. For larger businesses or government data processing,
Herman Hollerith’s punch card machines formed a system for
storing, tabulating, and sorting data [38] (prominent manufac-
turers included Hollerith’s International Business Machines
(IBM) and Remington Rand). As Aspray notes, these three
“legs” of computing –typewriters, adders, and punch card pro-
cessing –were already stabilized for around three decades
before the advent of electronic computers [10]. The “oper-
ators” of these machines –typists, clerks, secretaries –were
largely and increasingly women. Only the advent of World
War II brought additional attention on applied mathematics
and temporarily destabilized gender roles in the data process-
ing industry [3, 121]. By the advent of digital computers, the
social elements of computing –routinization and the division
of labour, and feminization of the workforce –had long been
in place [84].

THE CULTURE IN EARLY PROGRAMMING NOTATIONS:
THREE VISIONS
According to a report by Knuth & Pardos [83], the two first
high-level programming notations emerged around the mid-
1940s in Germany and at the ENIAC project in the United
States. Several years later emerged several typewritten visions
of programming in Europe and North America. Here I explore
these earliest acts of HCI design through lenses of materiality
and situated, cultural perspectives on knowledge construction.

Konrad Zuse’s Vision
During the cold opening months of 1945, as Allied planes
bombed Berlin, the German inventor Konrad Zuse huddled
in safety with his family. His inventions the Z1-3 computers
lay blown to pieces in the ruins of his center-city workshop.
He secured a truck to transport his wife, assistants, and sole
remaining computer, the several-ton Z4, out of the city. Reach-
ing the alpine village of Hinterstein over 650km south, Zuse
setup the Z4 in a barn, but found the machine was broken. Se-
cluded from the world with no means to continue construction
on computers, he put pen to page, seeking a “universal formula
language” for computation as an extension of his dissertation
[141, p. 212]. This language he named the Plankalkül, the first
high-level programming notation [83, 61].

All of Zuse’s prior training and interests accompanied him
to Hinterstein. As a photographer and artist, he had painted
posters, wrote poetry, and acted and directed theatre, perform-
ing as “unknown inventors or artists” [141, p. 26]; as an
engineer and inventor, he was trained in mathematics, formal
logic, and civil engineering. He combined these seemingly
disparate interests in efforts such as applying descriptive ge-
ometry to the optimal viewing of artistic work, or using punch
cards to automate photography dark room processes [141, p.

Figure 1: Excerpted notations of German logicians
Hilbert/Ackermann and Frege, whose works Zuse studied.
Below, a handwritten excerpt from Zuse’s 1945 Plankalkül
notebook, showcasing the Zeilenverschiebung, or ‘line shift’
notation [139]. From original texts [67, 53, 140].

17-19, 28]. Zuse seemed to relish the benefits technology of
writing entailed, and became agitated when they were sup-
pressed. In college, he switched majors two times in upset
over drafting classes, stating that they “had shattered my illu-
sions. The creative spirit was left little freedom in the manner
of presentation; everything was standardized, everything was
decided: the line thickness, manner of dimensioning, even the
positioning of dimension figures” [141, p. 15]. While living in
Hinterstein, he continued practicing art by engraving scenes
into wood blocks.

In creating the Plankalkül, Zuse drew from his artistic dispo-
sition and passionate interest in formal logic. Of the former,
he never appeared to question coding as involving drawn lines
and written notation. Of the latter, he dreamt of the universe
as “a giant computing machine” and became obsessed with
visions of a “mechanical brain,” what today we would call gen-
eral artificial intelligence. This analytic brand of philosophy
he likely inherited from German logicians whose works he
studied closely, notably David Hilbert, Wilhelm Ackermann,
and Gottlob Frege [141, p. 44-6,83,105]. Acknowledging
the limits of numeric computation, he designed his ‘calcu-
lus’ around propositional and predicate logic in order to solve
chess problems [83].

Frege’s work deserves some comment here. European math-
ematicians at this time preferred the aesthetics of linear se-
quences, and, if they were aware of Frege’s work, frowned
upon his two-dimensional notation (Figure 1). For instance,
historian Florian Cajori called it “repulsive” [31] and logician
Ernst Schröder “ridiculed” it as Japanese [95], hinting at xeno-
phobic underpinnings behind some aesthetic judgements. But
Zuse did not seem deterred. What today would be considered
a single “line” of code is expressed across three rows as a
matter of routine: the first row commonly including variables,
the second denoting subscripts, and the third types [113]. Zuse
remarks on the ease of “drawing a line” across multiple rows
of characters to connect indices and liberally adopted nota-
tion5 from mathematics and formal logic [141, p. 219]. Later
5Notation included the square root √ , power n, times ×, infinity ∞,
dot ·, delta ∆, Greek letters σ , φ , τ, ε ; logic notation included ∧ and
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scholars, in reflecting on the Plankalkül, commented that the
notation was “clumsy,” “unorthodox,” and puzzling [21, 113],
reflecting a similar aesthetic valuation as that held against
Frege.

From a technical standpoint, Zuse’s Plankalkül contained what
would be considered “standard features” in approaches over
a decade later and embodied a functional programming style
twenty-five years before similar developments occurred in the
Anglocentric community [54, 21]. When John Backus gave a
Turing Award Lecture on functional style in 1977, he lamented
the entrenchment of the imperative paradigm he helped cre-
ate, calling numeric languages “conventional” and arguing
that they had to be “liberated” from a “fixation” on the von
Neumann computer [12, p.616]. Ironically, Zuse had built a
similar functional style into his language around the same time
von Neumann was handwriting the First Report on the EDVAC
[134] which came to define what a “von Neumann computer”
is. Zuse wrote of the times, “as a German it would have
been difficult to gain the necessary attention at discussions
dominated by Americans” [141, p. 128].6

The ENIAC Vision
A similar vision of computer programming as involving writ-
ten and drawn coding emerged around the same time in the
United States on the ENIAC project, although for different
reasons. The ENIAC project is of course well-trodden terri-
tory in the history of computing, considered a landmark for
the electronic stored-program [62, 3, 88]. The women of the
project, for decades dismissed as “operators,” gained belated
recognition [20]. This section focuses on the cultural influ-
ences behind the written practices of the project’s vision of
high-level coding, formally published in the 1947 Planning
and Coding Reports by Herman Goldstine & John von Neu-
mann (hereafter GvN) with the aid of Adele Goldstine and
Arthur Burks [57, 56]. These reports were the first to pub-
licly formalize computer programming as a methodology and
popularized the term “programming” [61].

The ENIAC computer was built and run in the Moore School
of Electrical Engineering at the University of Pennsylvania
between 1943-55. In the early stages of development, ENIAC
programs were entirely represented as a sequence of machine
operations (“machine code” or, in their terminology, order
codes), then painstakingly converted to switch flips, plug-
board arrangements, and punch cards by women who physi-
cally programmed the machines [62]. Deciphering meaning
from sequences of orders was extremely difficult. Von Neu-
mann had worked out sorting algorithms in detail, and so had
intimate knowledge of the challenges facing the translation
task. The first merge sort algorithm he wrote by hand [133]
which was common; his handwritten reports often had to be
typed up by others [111, p. 6]. To cope with the growing com-
plexity of machine-level coding, GvN developed a notation of
box-and-arrow diagrams they called “flow diagrams.” In the

∨, open arrow⇒, and overline c as negation [113]. These last four
are likely from Hilbert/Ackermann [67].
6While Zuse’s work was only published almost two decades later,
Rutishauser, Böhm, and the British and French governments appeared
aware of it [141, 26, 116].

(a) (b)

Figure 2: (a) Section of ENIAC accumulator block diagram
abstracting an electronic circuit, Arthur Burks, Aug. 1947; (b)
Section of flow diagram hand-drawn by Adele Goldstine, Dec.
1947. Rewritten from originals [30, 55].

report, GvN state that “coding begins with the drawing of the
flow diagrams.” Such was the “dynamic or macroscopic stage
of coding” [57, p. 20]. Although later work in software would
characterize drawing diagrams as purely documentation, ex-
traneous to the practice of coding and “drawn after, not before,
writing” programs [29, p. 194], coding in the ENIAC vision
was firstly inscribing by disciplined hand. In later stages of
“static coding,” equations in boxes were converted into ma-
chine code and substituted for numbers. The four stages of
preparation reflected the division of labour established in the
data processing industry decades earlier [110].

The written culture of the Moore School’s electrical engineers
was central to how GvN conceived of this practice (Figure 2).
GvN originally used the engineering term “block diagram” in
an early draft of the Planning and Coding reports [111]. Block
diagram had been terminology used in electrical engineering
for at least a decade prior [96, 22] and similar diagrams were
drawn by hydrodynamic engineers and in industrial manufac-
turing [47, p. 326]. Block diagrams were commonplace in the
Moore School, as may be seen in the initial proposal for the
ENIAC machine itself in spring 1943 [3, p. 90] and a later
paper by Burks [30]. The notation gave an abstract picture of
a circuit or system. Rather than including all the fine details
in one picture, the block diagram would “block” out sections
with labelled boxes, to be filled in later with more detailed
figures. Flow diagrams did similarly, except mathematical
operations would be written inside the boxes. The similarities
between notations go beyond from the mere use of blocks
and connecting lines, however, and include + and − beside
conditional blocks (taken from polarity in electrical schemat-
ics), directional arrows, and semi-circles to ‘hop’ over visually
intersecting lines [62]. When the flow diagrams were later in
use, “the interaction of mathematicians and computer opera-
tors, among others, created a pidgin version” of the notation
as it met the realities faced by implementation [111, p. 88].

Yet other factors appeared to contribute to GvN’s choice of
notation. GvN were familiar with formal logic and abstract
mathematics, so they arguably had the technical ability to ap-
proximate Zuse’s vision. However, several factors worked
against this possibility. First, their institutional directive was
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to calculate equations, not solve logic conjectures. Second,
von Neumann by this time had grown disillusioned with for-
mal logic [3] and the ENIAC programmers were unfamiliar
with it [69]. Third, the ENIAC administrators had to coordi-
nate between a large staff and a rigid, secretive organizational
hierarchy [3, 47]. It is thus likely that GvN believed that
choosing a representation Moore School members were famil-
iar with was superior to introducing a more radical departure
in notation. The remarkable historical work of Priestley [111]
unearths similar reasoning in a first draft of the Planning and
Coding reports:

“[W]e have acquired a conviction that this programming
is best accomplished with the help of some graphical
representation of the problem. We have attempted... to
standardize upon a graphical notation... in the hope that
[it] would be sufficiently explicit to make quite clear
to a relatively unskilled operator the general outline of
the procedure. We further hope that from such a block-
diagram the operator will be able with ease to carry out a
complete coding of a problem.” (p. 59)

Note here the assumption that the “unskilled operator” –the
women –could easily follow a notation rooted in the culture
of electrical engineering. This was not true at the start of
the project. Unlike members of the Moore School, the six
ENIAC programmers (formerly human computers and math-
ematicians) had no training in electrical engineering. Upon
arrival, they were merely handed block diagrams and asked
to study them.7 Jennings Bartik recounts, “I had never read a
block diagram in my life. Betty [Snyder] hadn’t either, and we
assumed it was read from left to right like a book... I am still
amazed at how little help, instruction, or supervision we had”
[20, p. 75, 80]. This suggests that Bartik & Snyder applied
their existing cultural knowledge to the new material, making
sense of the situation as best they could.

Flow diagramming later spread largely due to von Neumann’s
celebrated status [3, 96], rather than any concerted effort by a
group or individual. Yet in the 1950s, Saul Gorn of the Moore-
affiliated Ballistics Research Lab [3, 101] would make explicit
the move to universalize the method. Gorn founded a research
programme to find a “Universal Code” where “the flow chart
would be the code” to be translated later into a representation
suitable for any underlying machine [78, p. 20]. This argu-
ment influenced the later ALGOL international commission,
a (largely failed, but highly influential) North American and
European effort to standardize a universal notation to define
algorithms [125]. Ultimately, flow diagramming would have
a powerful influence on programming and software engineer-
ing for decades to come, becoming the basis for the “visual”
paradigm of coding [28, 96] –a point to which I will return.

7After extensive archival work, Haigh et al. conclude that program-
mers’ later block and flow diagramming methods “were based on
work done long before they were hired,” which corrects some prior
accounts [62, p. 95].

The Typewritten Vision and the Serialization of Program-
ming Notation
From 1950 onward, visions of typing (non-numeric) symbols
to program emerged, beginning with assembly code [83, 78].
Prior historical work on writing and programming often begins
with this era (e.g., see [130, 101, 5]). Unlike the relative
isolation of the prior two visions, by this time a computing
community began to form [3], making it more difficult to trace
influences.8 Both Swiss mathematician Heinz Rutishauser and
Italian student Corraldo Böhm envisioned use of a keyboard
years before the more well-known MIT WHIRLWIND and
IBM FORTRAN projects [116, 26]. Here I touch on the work
of Böhm, at MIT and at IBM.

At a high level, and more rigidly than the prior two visions,
typewritten approaches were fabricated through a “dialectic
of resistance and accomodation” between humans and ma-
chines [109, p. 22]. In this dialectic, machines resisted cul-
tural practices which had developed along different material
constraints. In turn, inventors accommodated the resistance
through workarounds or modifications. The degree of accom-
modation depended on what specific machines inventors had
on-hand, whether they actually implemented their vision, and
the flexibility of the organization (if any) they operated under.

A strong commonality between the inventors of typewritten
visions was how they designed for mathematical users. Böhm
wanted to “[adhere], as closely as possible, to the notational
conventions followed by mathematicians” [26]; Laning & Zier-
ler’s goal at MIT was “to stay as close as possible to ordinary
mathematical notation” [86, p. 1-2]; and FORTRAN stands for
“Mathematical Formula Translating System” and its prelimi-
nary report depicts pages of translations from mathematical
notation (Figure 3) –considerations that were removed from
discussion in their 1957 paper [15, 17]. The culture of ap-
plied mathematics thereby came into conflict with the culture
of English commerce and business baked into IBM punch
card machines and keypunches, which had been outfitted in
the 1930s with alphanumeric encoding that excluded math-
ematical notation as simple as multiplication [10, 3]. Jones
lamented the “prohibitively expensive” issue in 1954: “the
typewriters and similar equipment... just doesn’t have the nec-
essary symbols... we are shackled by the design of a relatively
insignificant... piece of auxiliary machinery” [78, p. 24].

Examples abound of the resulting accommodations. In early
1953 at MIT Project WHIRLWIND [52], Laning & Zierler
took a Flexowriter teleprinter (a combined manual keypunch
and punch-card controlled printer whose design had passed
through IBM) and began development of an “interpretive pro-
gram” that they optimistically describe as being able to “accept
algebraic equations... (within certain limits imposed by the
Flexowriter)” [51, p. 4]. They were motivated by the reduc-
tion of “mistakes” and the need to educate outside, timeshared
mathematicians and scientists on the machines’ operation [52].

8For example, from 1948-9 Swiss mathematicians Eduard Stiefel
and Heinz Rutishauser visited von Neumann, returned to Europe and
met Zuse, his Z4 and Plankalkül –effectively bridging the isolation
between visions. In 1952, they helped develop the Swiss computer
ERMETH [100].
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Figure 3: Examples of translations from mathematical notation
to what FORTRAN designers anticipated could be typed on
an IBM keypunch (1954). Notice the handwritten × symbols
and lowercase letters: by 1956, these became asterisks and
uppercase letters [14, 15]. Rewritten from original [16].

Inventors accommodated Flexowriter limits with workarounds
like representing a subscript by a vertical bar before a super-
script (e.g. n|2), or by “fil[ing] off... [the] lower dot of the
colon [key]” to make a multiplication symbol [86, p. 10-15].
The interface also inspired an innovation for overcoming am-
biguity: keys for toggling between upper and lower case were
appropriated to disambiguate between inputting commands
and variables.

At IBM, FORTRAN designers had less flexibility to alter
machines to suit their needs. John Backus, who founded
the effort, was a college-educated mathematician hired to
calculate Fourier series; long hours and difficulties of using
machine code motivated him to “make it a little easier” [27].
He submitted a proposal to IBM management to lead a team
to expand on this idea [13]. Operating in relative obscurity
due to political tensions between Thomas Watson Jr. and Sr.,
the FORTRAN team had to work within the constraints of
IBM’s ecosystem of standardized calculating machines built
for business, aircraft, and government markets. They made
do with IBM keypunch limitations by, for instance, using
parentheses to denote super- and sub-scripts, adopting * and
** for multiplication × and exponentiation, and enforcing
all uppercase letters. Though these changes may be seen as
concessions, they may also be seen as standards enforcing an
economy of notation rather than idiosyncrasy.9

Yet for typewritten visions, the material form of the machines
enforced constraints that went beyond mere symbol swap-
ping. The linearity and limited size of punch cards and the
left-to-right, top-to-bottom norm of Anglo- and European so-
cieties enforced a notation that involved a sequential series
of horizontal rows of characters, where the number of char-
acters was limited by punch card size. Semi-sequential no-
tations like Σn

j=1 confounded serial input (i.e. it is unclear
whether n or i = 1 came first), and thus had to be serialized
e.g. SUM(J,1,N,...) [17, p. 10]. Backus & Herrick’s IBM
Speedcoding paper in 1954 describes the challenges facing

9While Backus claimed he knew little about the ENIAC [117], he
drew flow diagrams in 1951-2 which quite closely resemble Goldstine
& von Neumann’s notation [11].

the translation task between “rich” mathematical notation into
“fairly involved” typed expansions:

“Obviously the programmer would like to write... ‘X +Y ’
instead of: ‘CLEAR AND ADD 100’... To go a step
further he would like to write Σ ai j · b jk instead of the
fairly involved set of instructions corresponding to this
expression.” [16, p. 112]

Unlike before, here ‘writing’ is no longer assumed the domain
of the handwritten; instead, primacy is granted to the digitizing,
standardized interfaces one grapples with, even when they are
not there. Through this transition from writing to ‘writing’
(what can be typed), the serialization of notation enforced by
typewriters and punch cards enabled an easy alliance with
the metaphor of ‘language,’ a metaphor that even computing
historians “forget... has its own history” [101]. In the Zuse and
ENIAC visions, ‘language’ did not appear in any major way:
Zuse preferred calculus and the term appears in GvN’s reports
only once in reference to machine code [57]. By contrast,
FORTRAN papers describe the notation as a language rather
than as code or psuedo-code, announcing that this approach
should “virtually eliminate coding” [17, p. 2]. Around this
time, Grace Hopper and the popular media also played a large
role in spreading the metaphor [101].

Typewritten visions of programming, rather than the Zuse
and ENIAC visions, “[asked] what was possible to implement
rather than what was possible to write” [83, p. 15]. But
the vision of typing code, despite its suggestion, still did not
fully attach ‘writing’ to ‘typing.’ Following the division of
labour in data processing at Remington Rand and IBM, among
others, women were employed as keypunch typists on the
UNIVAC (e.g., [112]) or in institutions that ran FORTRAN
[84]. Statements were handwritten or typed onto paper slips
called coding sheets and handed off to typists for punching
[14]. It was not until punch cards were phased out in the
electromechanical teleprinter era that typing “directly” into
the machine displaced the need to handwrite code [50].

DISCUSSION
These case studies of the origins of programming notation
reveal several insights about the earliest history of HCI. First,
‘code,’ even in the current sense, was foremost handwritten and
drawn before it was typed. The materiality of writing afforded
alternative representations more closely associated with ‘nota-
tion’ than language. Second, the design of notations and prac-
tices for programming originally extended and adapted prior
cultural activity. These adoptions included, but went beyond
the simple use of natural language for keywords. Methods
designed to suit one community’s culture, such as flow dia-
gramming at the Moore School adapted from the practices of
its electrical engineers, spread and were widely adopted with
little reflection on their situatedness. Two of these methods,
ENIAC and FORTRAN, thereafter delineated the dominant
culture against which later approaches were measured and
justified [125, 130]. Other methods, such as Zuse’s Plankalkül,
remained ignored for cultural and historical reasons. Third
and most importantly, programming notations and their use
are –and always were –social and material sites of intercultural
conflict, compromise, and innovation. Especially for those
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marginalized from male, Anglocentric norms, programming
did not just mean punching cards, flipping switches, planning
or typing code, but was (and is) often “a problem of mapping
from one culture to another” [38, p. 138], a recurrent site
of translation work, cultural tensions and learning (see also
[58, 8]). Beyond the translation work of social collaborations
‘around’ programming systems [106], however, I argue that
translating between representations is a fundamental quality
of the practice of writing code, and is not always the result of
technical limitations.

Still, some readers may cling to the feeling that the shift-key
keyboard was inevitable and typing code is actually the ‘best’
method (similar arguments to Brooks [29] and those who tried
to explain the failure of Engelbart’s keyset [18, p. 217-8]). In-
deed, like all standards in HCI [76], the metaphor of language
and English keyboard interface did prove generative, such as
inspiring approaches like Hopper’s COBOL [5] and enabling
global traffic in code [58]. And it is also true that technical
limitations hampered early alternatives such as GRAIL’s light
pen coding [46], which Alan Kay called the most “intimate”
interface he had ever experienced, but which suffered from a
heavy stylus and low refresh rates [80]. But cases like Zuse’s
Plankalkül should give us pause, raising serious questions
about how the generalizing of some early, highly situated de-
signs not only act to enable our interactions with computers,
but to enframe and constrain later imaginations. The historical
record suggests that feelings of inevitability or superiority,
rather than being rooted in technical facts, may instead be the
outgrowth of a deep-rooted ethnocentrism, an understandable
resistance to cognitive dissonance. If HCI is truly to support
and engage with a diversity of minds and cultural backgrounds,
then we should resist the urge to centre the typewritten with
moves which imply its dominance or universality. We continue
to do so in two major ways.

First, alternative approaches to programming are often framed
and justified for publication as ‘educational’ (to inculcate new-
comers into the old regime) or for mere ‘end-users’ –i.e., peo-
ple who are not, in the end, ‘experts.’ The implication is, of
course, that the typewritten is the domain of the expert, and
the ‘visual’ (or anything else) is for “newbies” [127]. If we are
to change, we must be willing to challenge the practices and
values of experts (as, for instance, the notation design work
of Bob Coecke and collaborators have in quantum physics
[33]). Second, and as I expand upon below, the way we speak
about programming and measure programming knowledge
centres the typewritten –from the ACM classifier of this paper
(“History of Programming Languages”), to the organizational
and theoretical focus on single languages, to gate-keeping
exams like the AP Computer Science A [25], to the kinds of
questions asked by HCI researchers and neuroscientists [107],
whose experiments seek to influence pedagogy, evaluation,
and design. For instance, in August 2019, one of the creators
of a ‘language-independent’ coding assessment apologized
for their claims of independence and claimed that “we as a
research community haven’t thought deeply enough yet about
the interaction between programming languages and cogni-
tion” [59]. Following situated theories of cognition, we must
learn to see programming systems as cultural tools that are

embedded in particular social activity. Keeping this broad
point in mind, I now connect my work to other scholars and
draw further insights this framing of HCI’s early history might
provide to the current field.

The Early History of HCI as Situated Knowledge and
“Making Do”
On the one hand, many progenitors of writing code were in a
relatively privileged position in their respective societies, with
many having the time, education, and resources to invent a
new practice, even if some were marginalized by their con-
temporaries. On the other hand –and unlike later ‘hackers’
motivated by revolution, liberation, or democratization [7]
–many inventors were motivated by the need to simplify the
everyday difficulties of handling error-prone data processing
machines, systems which had existed in a similar form for
decades. These inventors were “making do” [8] with their
particular situation and on-hand materials to make incremental
improvements to their interactions with computers. Keyboard
interfaces were appropriated not out of a suite of alternatives
or by some leap of imagination, but because they were liter-
ally lying around, ready to be repurposed –just like the other
written practices I mention.

This situated, contingent perspective on knowledge construc-
tion connects with standpoint theory and third paradigm HCI
[66, 122, 45]. Drawing from Donna Haraway’s situated knowl-
edges [65], standpoint theory argues that scientific or techno-
logical visions often present themselves as objective truth –in
the parlance of programming, masking themselves as universal
or general-purpose –but are in fact “coming from particular
points of view and generated through particular mechanisms”
[66]. For example, rather than seeing FORTRAN as the first
‘general-purpose,’ compiled notation, this perspective would
argue that FORTRAN was specific to a domain, in exactly the
same way as, say, Max/Msp [1] is a programming environment
for musicians. Similarly, rather than seeing the rise and fall
of flow diagrams as reflecting the failure of ostensibly ‘visual’
thinking [96, 104, 28], this perspective instead would argue
that flow diagrams were ill-suited to the wide range of differ-
ent contexts in which they travelled. It was not the ‘visual’ that
was flawed –such a blanket statement reflects what Dourish
& Mainwaring call a “colonial impulse” [45] –but the early
computing culture’s habit of universalizing and marginalizing,
coupled with the constraints of machines and infrastructure.
This same habit of generalizing “[o]ne historical particularity...
into a timeless and spaceless universality” [135] drove the
entrenchment of the imperative (i.e. FORTRAN) paradigm.

The Naturalization of the Textual/Visual Dichotomy
My analysis also builds on the broader historical marginaliza-
tion of handwork as something outside of programming [114].
Zuse and ENIAC project members imagined coding as involv-
ing written and drawn forms, connecting to their dispositions
and practices as artists, mathematicians, and engineers. Later,
however, coding became imagined as foremost typewritten,
and programming notations became described as ‘languages’
belonging to either ‘textual’ or ‘visual’ paradigms [28]. Zuse’s
zig-zagged, row-crossing line challenges the very distinction
between the ‘textual’ and ‘visual,’ revealing it as a fabrication
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tied to many factors: the early dominance of the keyboard, the
metaphor of language, and the serialization enforced by early
machines’ processes. For instance, a paper in 1995 recounts
arguments against visual languages which claimed that they
are “not equally acceptable for all” and rationalized the posi-
tion with a myth about right-left brain hemispheres [104].10

Over a decade earlier in a Turing Award talk, Kenneth Iverson
justified a typewritten approach by claiming that mathematical
notation “lacks universality” and the typewritten is instead
“universal (general-purpose)” [75, p. 340] –indeed a stark
value shift from early inventors’ deference to mathematical no-
tation.11Ingold argues that this constructed boundary between
the textual and the drawn “hinges upon a dichotomy between
technology and art that has become deeply entrenched within
the modern constitution” but that “dates back no more than
three hundred years” and has its genesis in the rise of industrial
capitalism, division of labour, and routinization [73, p. 127].

To disrupt the textual/visual fabrication in future work, we
might consider the translation work of even the most technical
people. Two burgeoning fields with this property are machine
learning and quantum computing. Quantum computing practi-
tioners communicate via a variety of diagrams and notation,
yet when ‘writing code’ for a quantum computer, APIs require
users to translate these representations into a FORTRAN-like
sequence of calls [9]. While this typewritten standard allows
easy inter-operation with other code and infrastructure, it also
perpetuates a value-laden idea that the ‘visual’ is, in the words
of one user, for those in “kindergarten” [9, p. 7], echoing
those who ridiculed Frege’s notation. Such statements, I argue,
should not be taken at face value in deference to the ‘experts’
or user-centred design. Instead, we should pay attention to
how our interfaces have naturalized and centred typewritten
notations, precluding the possibility that alternatives offer im-
provements over the typewritten (e.g., diagrams for unruly
tensor indices [33, p. 10]).

Embracing Heterogeneity in Programming Practice
So far, I have mainly been concerned with questions of com-
puting culture and history, rather than speaking more directly
to the subfield of programming (usually appended with lan-
guages and abbrev. as PL). Today, many programming com-
munities continue a tendency to be biased towards a single
approach –towards a single language or a one-size-fits-all vi-
sion –rather than viewing programming as a practice involving
interactions between a plurality of representations, practices,
infrastructure, people, and (possibly contradictory) perspec-
tives. This tendency is embedded in the way programming is
taught, where content often focuses on learning a language
or paradigm, and avoids other learning about how to contend
with infrastructures setup to support programming, or commu-
nication between people, software, and indeed other notations

10In cogniton and neuroscience, a growing number of studies suggest
that processing of ostensibly formal (symbolic) notations utilizes
visuo-spatial, nonlinguistic parts of the brain [85, 6].

11Theorists might raise questions here about computational universal-
ity and Turing completeness. Although not my focus, I ask theorists
to notice how notions of completeness are upheld through translation
work, e.g. to Turing machines or lambda calculus, encodings for
numbers, etc. One might also keep in mind that, as Felleisen notes,
proving completeness does little for insightful PL design [48].

[89, 106, 64]. Said another way, PL researchers’ continued
attention to single languages, boxed-in categories, and tradi-
tional eschewing of HCI methods and factors [123] resists
efforts to conceptualize and design programming systems as
interminglings of practices and representations.

As I have suggested above, future work in programming sys-
tem design can build on the lessons of the past by embracing,
rather than avoiding, heterogeneity in programming practice
(e.g., drawing diagrams in Jupyter notebooks that are the code).
In part, such efforts may benefit from paying a deeper atten-
tion to the ‘translation work’ users perform when writing code
and how new notations and practices extend existing culture
(whether to support that existing culture, or to design new
practices that reflectively reject it). Suchman’s concepts of
“partial translations” and “artful integrations” are important
resources here: that “in place of the vision of a single tech-
nology that subsumes all others (the workstation, the ultimate
multifunction machine), [designers] assume the continued ex-
istence of hybrid systems composed of heterogeneous devices”
[122, p. 99]. As Lindtner et al. argue, those that seek to
alter the status quo might also draw from feminist concepts of
“walking alongside” (roughly, tolerance and respect without
comprehension) and “parasitic resistance” – “an entity that is
dependent on a host yet pursues independent goals, including
goals that go against the interests of the host” [91] –indeed
familiar concepts to intercultural competence education [63],
infrastructure studies of organizational change [119], and the
tension of learning within a dominant culture articulated by
Lisa Delpit in Other Peoples’ Children [40].

Finally, I return to the anecdote where we began: Dynami-
cLand’s programming ecosystem and rhetoric of liberation.
Although the keyboard and screen reform as an “obligatory
passage point” [87], an alternative, optimistic reading consid-
ers the project as a parasitic resistance grafted onto the status
quo that it will eventually consume. Indeed, multi-domain
approaches to programming are increasingly gaining accep-
tance in coding communities, reflected in the confluence of
paradigms supported by Python and JavaScript, in approaches
like React and Darklang, and also in PL theory, expanding on
an earlier body of work on foreign function interfaces [2, 93].
In particular, the metaphor of language is now extended to
“multilingual,” [59] “polyglot” [64], or “multi-language worlds”
[2]. While these approaches remain largely beholden to a type-
written, English status quo, they do represent a shift towards
the embrace of the pidgin and creole, the hybrid, towards a
kind of epistemological inclusivity. A prominent example is
the typewritten, Lisp-based Racket, framed (perhaps strategi-
cally) as an educational language. Its manifesto declares: “A
proper approach [to programming] uses the language of the
domain to state the problem and articulate solution processes...
[S]ystems will necessarily consist of interconnected compo-
nents in several different languages” [49, p. 114]. Though
Racket too tends towards a totalizing project (“there must be
no need to step outside” [49]), its approach is rare in the field
of programming languages and represents a promising turn
towards the intercultural.
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CONCLUSION
“The future... is that which breaks absolutely with consti-
tuted normality and can only be proclaimed, presented,
as a sort of monstrosity.”

– Jacques Derrida [41]

Is it possible that the phrase “to write code” will not immedi-
ately imply typing in the future? Although some in program-
ming and HCI continue to centre typewritten approaches and
deploy universalist language, a historical perspective suggests
that notations and practices of programming are likely much
more situated than we typically imagine. Those in HCI and CS
education should keep in mind how programming notations
are cultural tools that are products of intercultural tensions
and compromise, and not neutral descriptors of algorithms
or systems. The development of new programming systems
will not just involve appropriation of the past, but conscious
reflection on –and sometimes rejection of –its practices, nota-
tion, and discourse, of how they have come to condition our
bodies and imaginations. While some may resist such efforts,
I am hopeful that with enough reflection and an intercultural
perspective, we in HCI can truly take steps towards a “plurality
of centres” [135] in expert –not just end-user or educational
–programming practice.
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